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1 Ginzburg-Landau theory

1.1 Free Energy

In 1950, 7 years before the BCS Theory, Ginzburg and Landau postulated the complete fundamental equations
for macroscopic superconductivity. Their work is praised as the triumph of physical intuition. London equations,
Abrikosov vortex lattice and Josephson relations, all can be derived from there. The GL free energy is the macro-
scopic elastic theory appropriate for any superconductor. The parameters for this free energy are the complex-valued
”order parameter” Ψ(~r) and the vector potential ~A(~r). The order parameter is what defines the superconducting state.
If we separate the magnitude and the phase of Ψ(~r):

Ψ(~r) = |Ψ(~r)|eiθ(~r) (1)

|Ψ(~r)|2= ns(~r) (2)

where ns(~r) is the superfluid density. The Ginzburg-Landau model defines superconductor as a charged Bose
superfluid with particles of mass m∗ and charge e∗.If superconducting state is fully destroyed in any domain within
the sample of study, ns(~r) = 0 there.

The total Ginzburg-Landau free energy has the form:

Ftot(Ψ(~r), ~A(~r)) =

∫
d3~rFGL(~r) (3)

where the Ginzburg-Landau free energy density at the given position is:

FGL(~r) = FL(Ψ(~r)) + Fgrad(Ψ(~r), ~A(~r)) + Umag( ~A(~r)) (4)

Here FL is Landau term which is the same free energy density as in the Landau mean field theory. It depends
only on Ψ(~r) and doesn’t include any direct effects that external magnetic field might have. Thus, it is the free energy
density in a spatially uniform state and absence of external magnetic field. Assuming that FL is an analytic function
of Ψ(~r) we get

FL(Ψ) = αΨ2 +
β

2
Ψ4 + .... (5)
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Figure 1: FL vs Ψ for several α and β values.
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Figure 1 shows the FL vs Ψ for several α and β values. Here we see that for α > 0 the minima for FL occurs at
Ψ = 0. This means that for any α > 0 the ground state is the state with no superfluid density, thus normal state. For
α < 0 the minima for FL occurs at Ψ = Ψ∞ where

Ψ∞ =

√
− α(0)

β
(6)

Since we expect a transition from superconductor state to normal state at the superconducting critical temperature
Tc we know that α should go from negative to positive at Tc. And we also expect α to be an analytic function of
temperature, so we can write:

α(T ) = α
′
(T − Tc) (7)

The Fgrad is a kinetic energy term and given by:

Fgrad(Ψ, ~A) =
h̄2

2m∗
|(~∇−

ie∗

h̄
~A)Ψ)|2 (8)

In a way its energy due to interaction of superconducting current and magnetic field.
Finally, Umag( ~A) is just the energy due to the magnetic field and given by the simple equation:

Umag( ~A) =
1

2µ0
|~∇× ~A|2 (9)

The detailed justification and derivation can be found in the lecture notes by Christopher L. Henley [1] and Phillip
M. Duxbury [2]

Although the Ginzburg-Landau theory precedes the BCS theory, in 1959, Gorkov was able to derive the same
equation from BCS theory in the limit where temperature is close to the superconducting critical temperature [3]. He
showed that Ψ ∝ ∆ where ∆ is the superconducting gap.

1.2 Time Dependence

If we rewrite (3) using (1) to substitute for both Ψ and Ψ∗ we will end up with Ftot(ns, θ). Since the phase θ and the
superfluid charge density ns are canonically conjugate we get Hamilton’s equations of motion:

h̄
dθ(~r, t)

dt
= −

∂Ftot

∂ns(~r, t)
(10)

h̄
dns(~r, t)

dt
= −

∂Ftot

∂θ(~r, t)
(11)

This leads to 2 Time-Dependent Ginzburg-Landau equations:

h̄2

2m∗D

∂Ψ

∂t
= −

1

2m∗

(
h̄

i
~∇− e∗ ~A

)2

Ψ + αΨ− β|Ψ|2Ψ (12)

σ
∂ ~A

∂t
=

e∗h̄

2m∗i

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
−

e2
∗

m∗
|Ψ|2 ~A−

1

µ0

~∇× ~∇× ~A (13)
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where m∗ = 2me is the mass of the Cooper pair, e∗ = 2e is the charge of the Cooper pair, D is the phenomenological
diffusion coefficient and σ is the conductivity of the normal (non-superconducting) current.

Here the superconducting current can be obtained from the expectation value of the momentum operator:

~Js =
e∗h̄

2m∗i

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
−

e2
∗

m∗
|Ψ|2 ~A (14)

1.3 Gauge Choice

Vinokur has a different set of TDGL equations in his paper [4] where the scalar electric potential Φ is also used:

h̄2

2m∗D

(
∂

∂t
+ i

e∗

h̄
Φ

)
Ψ = −

1

2m∗

(
h̄

i
~∇− e∗ ~A

)2

Ψ + αΨ− β|Ψ|2Ψ (15)

σ

(
∂ ~A

∂t
+ ~∇Φ

)
=

e∗h̄

2m∗i

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
−

e2
∗

m∗
|Ψ|2 ~A−

1

µ0

~∇× ~∇× ~A (16)

However, we know that the Ginzburg-Landau equations are gauge invariant. For any given function χ(x, y, z, t):

Ψ̃ = Ψeiκχ; Ã = A+∇χ; Φ̃ = Φ−
∂χ

∂t

would also satisfy the equation. In order to simplify the equation and remove the scalar potential Φ one could set

∂χ

∂t
= Φ (17)

and equations 15 and 16 will simplify to 12 and 13.

1.4 Assumptions

”A continuous symmetry like Ψ(~r) = |Ψ(~r)|ei∆θ(~r) normally implies the existence of a gapless Goldstone
mode” [1]

.

”These dynamic equations are microscopically justified only for gap-less superconductors” [5],[6].

1.5 Normalization

Lets introduce some normalized quantities:

Ψ̃ =
Ψ

Ψ∞
where |Ψ∞|2= −

α(0)

β
is the bulk superfluid density at zero temperature in the absence of external

magnetic field.
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x̃ =
x

λ0
thus ∇̃ = λ0∇ where x represents length and λ0 = κ

h̄
√

2mα0
is the zero temperature GL penetration depth.

Here κ =
λ0

ξ0
where ξ0 is the zero temperature GL coherence length.

B̃ =
B

Bc2
where Bc2 =

Φ0

ξ2
0

.

~̃
A =

λ0

κ2Φ0

~A where Φ0 is the magnetic flux quantum.

J̃ =
J

Jc
where Jc =

µ0λ
3
0

κ2Φ0
=

Bc2

µ0λ0
.

t̃ =
t

τ0
where τ0 = µ0λ

2
0σn .

η =
τGL

τ0
where τGL =

ξ2
0

D
and D here is the phenomenological diffusion coefficient given by D =

vF l

3
[7] with vF being

the Fermi velocity and l being the quasiparticle mean free path [8].

σ̃ =
σ

σn
, where σn is the normal state conductivity.

Rewriting 12 and 13 using newly introduced quantities we get:

η
∂Ψ̃

∂t̃
= −

(
i

κ
∇̃+ κÃ

)2

Ψ̃ +
(
ε− |Ψ̃|2

)
Ψ̃

σ̃
∂Ã

∂t̃
=

1

2κ2i

(
Ψ̃∗∇̃Ψ̃− Ψ̃∇̃Ψ̃∗

)
− |Ψ̃|2Ã− ∇̃ × ∇̃ × Ã

J̃ =
1

2κ2i

(
Ψ̃∗∇̃Ψ̃− Ψ̃∇̃Ψ̃∗

)
− |Ψ̃|2Ã

where ε(~r, T ) =
α(~r, T )

α∞
and α∞ = α(Bulk, 0) = −α′Tc. Any localized defect, or nonzero temperature can be

specified through ε.

2 TDGL for Comsol

2.1 Normalized TDGL and Boundary Conditions

In the previous section we derived the normalized TDGL Equations. Lets rewrite them by dropping superscripts:

η
∂Ψ

∂t
= −

(
i

κ
~∇+ κ ~A

)2

Ψ +
(
ε− |Ψ|2

)
Ψ (18)
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σ
∂ ~A

∂t
=

1

2κ2i

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
− |Ψ|2 ~A− ~∇× ~∇× ~A (19)

~J =
1

2κ2i

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
− |Ψ|2 ~A (20)

From now on, all the equations will be written in normalized form referring to section 1.5 .
Now, we want to numerically simulate the superconducting domain, we need to specify the boundary conditions.

Any current passing through the boundary between a superconducting domain and vacuum/insulator would be non-
physical, thus we expect:

~J · n̂ = 0 on ∂Ω (21)

Here n̂ is unit vector normal to the boundary, and since we expect (21) to be true even when ~A = 0 and Ψ 6= 0
the first boundary condition is:

~∇Ψ · n̂ = 0 on ∂Ω (22)

there should also be no normal state current through the boundary thus

~E · n̂ = 0 (23)

and since ~E = −
∂ ~A

∂t

∂ ~A

∂t
· n̂ = 0 (24)

and by integrating we can write:

~A · n̂ = 0 on ∂Ω (25)

The third boundary condition generally used is the continuity of magnetic field.

~∇× ~A = Bexternal on ∂Ω (26)

2.2 Rewriting for Comsol

Comsol can efficiently solve several types of mathematical equations, one of which is General Form Partial Differential
Equation:

da
∂~x

∂t
+ ~∇ · ~Γ = ~F (27)

where

da =


d11 d12 ... ... d1m

d21 d22 ... ... ...
... ... ... ... ...
... ... ... ... ...
dm1 ... ... ... dmm

 ~x =


x1

x2

...

...
xm

 ~Γ =


g11 g12 g13

g21 g22 g23

... ... ...

... ... ...
gm1 gm2 gm3

 ~F =


f1

f2

...

...
fm


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Now we need to rewrite 18 and 19 so that we can put it into this form. We will rewrite [9]:

Ψ = v1 + iv2 (28)

~A = A1x̂+A2ŷ +A3ẑ (29)

After some simple mathematical rearrangement we get an equation similar to 27:


η 0 0 0 0
0 η 0 0 0
0 0 σ 0 0
0 0 0 σ 0
0 0 0 0 σ

 · ∂∂t

v1

v2

A1

A2

A3

+
[
∂
∂x

∂
∂y

∂
∂x

]
·


−
v1x

κ2
−
v1y

κ2
−
v1z

κ2

−
v2x

κ2
−
v2y

κ2
−
v2z

κ2

0 A2x −A1y A3x −A1z

A1y −A2x 0 A3y −A2y

A1z −A3x A2z −A3y 0


= ~F (30)

~F =



(A1x +A2y +A3z)

κ
v2 +

2 (A1v2x +A2v2y +A3v2z)

κ
− (A2

1 +A2
2 +A2

3)v1 +
(
ε−

(
v2

1 + v2
2

))
v1

−
(A1x +A2y +A3z)

κ
v1 −

2 (A1v1x +A2v1y +A3v1z)

κ
− (A2

1 +A2
2 +A2

3)v2 +
(
ε−

(
v2

1 + v2
2

))
v2

(v1v2x − v2v1x)

κ2
−
(
v2

1 + v2
2

)
A1

(v1v2y − v2v1y)

κ2
−
(
v2

1 + v2
2

)
A2

(v1v2z − v2v1z)

κ2
−
(
v2

1 + v2
2

)
A3


(31)

with simple boundary conditions:
~∇Γ · n̂ = 0 on ∂Ω (32)

~A · n̂ = 0 on ∂Ω (33)

and
~∇× ~A = ~∇× ~Aext on ∂Ω (34)

Here v1x means ∂v1
∂x and so on...

Figure 2: The superconducting domain and boundary conditions.

Eq 30 is solved in a superconducting domain with 32, 33 and 34 being the boundary conditions. This is represented
in Figure 2.
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2.3 Reproducing known results

We first tested the accuracy of our simulation by reproducing some published results. The example provided here is
the result of the Danish group [9], where A 2-dimensional 10λ0 by 10λ0 rectangular domain was simulated in Comsol.
A uniform external magnetic field is applied perpendicular to the surface of this 2D superconducting domain with
κ = 4. The system is at 0K temperature and started from fully superconducting state at t = 0. Figure 3 shows
the plot of Ψ2 along with the comparison of our result with the original at B = 0.1875 and t = 35. All quantities
normalized as described in section 1.5. Figure 4 has the result for same scenario at a later time, t=100;

We can clearly see how vortices penetrate through the boundary and come into equilibrium at the center.

Figure 3: Ψ2 plot at t = 35 and B = 0.75/κ a) Result by Pedersen b) our result

Figure 4: Ψ2 plot at t = 100 and B = 0.75/κ a) Result by Pedersen b) our result

2.3.1 Argument about Boundary condition: Superconducting Sphere inside uniform magnetic field

Many papers that we reviewed use 34 or 26 in SI units:

~∇× ~A = ~Bexternal on ∂Ω
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However this implies that the superconducting screening current has no effect on magnetic field at the boundary
and beyond the superconducting domain. This is physically wrong. The effect of screening currents is crucial when one
is trying to simulate spatially nonuniform external magnetic field (like magnetic dipoles). We decided to use 2 domains
for our calculations: Superconductor domain and Vacuum/Insulator surrounding it. We solve TDGL equations in the
superconductor domain, and only solve Maxwell equations in the second domain. Equations 32 and 33 would still be
valid at the superconductor/insulator boundary, however we will not use 34 there. Instead we enforce 34 at the outer
boundary of our second domain where the contribution from the superconductor is negligible (assuming the second
domain is big enough). Figure 5 shows this scenario in a schematic.

Figure 5: The 2 domains and boundary conditions.

To test our model we chose the simplest example: a superconducting sphere inside a uniform external magnetic
field. We simulated the response of a superconducting sphere inside uniform magnetic field using our 2-domain method
and conventional single domain method used by everyone else and later we compared both results with the analytic
solution [10].

Figure 7 clearly shows that using the 2-domain model we can reproduce the exact analytic solution, while the
single domain model fails to account for the enhancement of magnetic field on the surface of the sphere.

2.3.2 Point Magnetic Dipole: Separation of ~A

The next step would be simulating the effect of spatially nonuniform magnetic field. Our magnetic writer probe can
be approximated to the first degree to a point magnetic dipole. We want to ensure that we can accurately simulate
the screening currents produced by the point magnetic dipole and compare to results obtained by Milosevich [11].

The superconducting domain and vacuum domain are simulated as 2 coaxial disks with equal radius R (see Figure
8. The height of the superconducting domain is Hsc and the height of the vacuum domain is Hvac. The point magnetic
dipole is placed at a height Hdipole with magnetic moment ~M(t). In simulation, we don’t specify M(t) we rather specify

the magnetic field produced at origin ~B(t) and the value for ~M(t) is chosen accordingly.

Minor issue here is the fact that at the location of the dipole ~∇× ~∇× ~A diverges, causing singularity in numerical
simulation. The solution is to redefine ~A as follows:

~A = ~Aext + ~u (35)

where ~A is total vector potential, ~u contribution due to normal and superconducting currents in superconducting
domain and ~Aext is the externally applied vector potential (source located outside the superconducting domain).
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Figure 6: a superconducting sphere inside uniform magnetic field. sphere diameter is 10λ0; vacuum domain diameter
is 30λ0 and κ = 1. Black arrows show vector magnetic field lines. Red line indicates the equator, the magnetic field
along red line is shown in figure 7.

Figure 7: Magnetic field profile along the equator of sphere in Fig 6.

Once we redefine ~A as in Eq.(35) we do not solve for ~A, we solve for ~u instead. Equation 30 has to be modified
accordingly.
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Figure 8: Diagram for the parallel point magnetic dipole above the superconductor

The following boundary conditions are enforced, assuming that both domains are sufficiently big enough and the
effect of the point magnetic dipole vanishes at outer boundaries:

On the boundary between the superconducting domain and vacuum domain

~∇Ψ · n̂ = 0 or equally ~∇Γ · n̂ = 0

and ~A · n̂ = 0 or equally ~u · n̂ = − ~Aext · n̂

On the boundary on top of vacuum domain

~A = ~Aext or equally ~u = 0

On all other boundaries of the superconducting domain and vacuum domain

~∇Ψ · n̂ = 0 or equally ~∇Γ · n̂ = 0

and ~A = 0 or equally ~u = − ~Aext

Figures 9 and 10 illustrate how similar our results are to the ones obtained by Milosevich. Figure 11 shows Jsurf
as function of distance from origin for the perpendicular dipole case (Figure 9). ”TDGL” is the result we got from
Comsol, ”Analytic” is the result obtained by Milosevic [11] and ”Numeric” is the result from numeric integration given
by Melnikov [12]. Since Comsol is the numerical simulation, our result is more similar to the one obtained by Melnikov.

This way we verified that we can accurately simulate the response of the superconductor to externally applied
spatially nonuniform magnetic field.
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Figure 9: Jsurf plot for perpendicular magnetic dipole at Hdipole = 1 a) Result by Milosevich b) our result

Figure 10: Jsurf plot for parallel magnetic dipole at Hdipole = 1 a) Result by Milosevich b) our result

3 SRF Application

Gurevich and Ciovati had proposed a model to explain the dissipation produced by vortices in an SRF cavity [13].
Since SRF cavity is subjected to RF field, a vortex semiloop can penetrate into the bulk of the superconductor during
the first half of the RF cycle, and an anti-vortex semi-loop can penetrate during the second half. For high values of
peak RF magnetic field amplitude, vortex and anti-vortex semi-loops meet inside the superconductor snd annihilate
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Figure 11: Jsurf magnitude vs distance from origin.

each other. Quantitative calculation of dissipated power due to this mechanism was performed by Gurevich and
Ciovati. The same idea was used by Tai to explain the harmonic response produced by Nb samples [14].

We will try to simulate this scenario in Comsol

3.1 TDGL Parameters for Nb

Before we start we need to gather relevant numbers for Nb from various sources:

σn ranges from 2× 108S/m to 2× 109S/m [15] depending on RRR value,

λ0 = 40nm [16] and κ = 0.8 [17]. Thus, τ0 = µ0λ
2
0σn = 4π × 10−7H/m× (40nm)

2 × 2× 109S/m = 4.02× 10−12s
for clean limit samples (RRR 300).

Period of 200τ0 corresponds to 8.04× 10−10s or experimental frequency of f = 1.24GHz. Considering that exper-
iments are done at higher frequencies and also expanding this solution for dirty limit, Period can range from 100τ0 to
2000τ0.

D = vF×l
2 > 1.37×106m/s×200nm

2 = 0.137m2/s[18] . Here 200nm is the optimal choice for quasiparticle mean free
path, although other values are possible depending on Nb RRR value.

τGL = ξ2

D =

λ2
0

κ2

D
= 1.825× 10−14s

η =
τGL

τ0
≈ 4.54× 10−3

3.2 Vortex Semiloops due to Magnetic Probe

The general scenario was explained in Section 2.3.2. Here we will just summarize our findings.
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3.2.1 Time Evolution of Vortex Semiloop

Figure 12: (Loking from inside the superconducting domain into the vacuum domain) a-h: Ψ2 evaluated at the

surface at different times for a Parallel Magnetic dipole above the Superconductor. ~M(t) is chosen such that ~B(t) =
0.75sin(ωt)x̂. i: Same result as shown in figure 12.e) but from different angle. Green contours show the vortex
semiloops. j: Bdipole at the surface vs time. Red circles correspond to snapshots a-h

The first simulation is done with R = 12, Hsc = 6, Hvac = 3, κ = 1, η = 1.675, Hdipole = 8, ~Bdipole = 0.75sin(ωt),
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T = 0 and Period = 200. The simulation was run for 3 periods to stabilize and the results shown in figure 12 are
calculated during 4th period. We see that as ~B(t) increases a normal state domain forms at the origin. Later as
magnetic field direction is reversed the normal domain vanishes and vortex semi-loops emerge from it.

We can also cut a slice at x = 0 and see how vortices affect currents inside the superconductor (Figure 13).

Figure 13: Ψ2 and Jsurf at t=73. Same result as shown in figure 12.e), y-z plane slice at x=0. Red arrows indicate
the currents induced inside the superconducting domain.

3.2.2 Vortex Semi-loops as function magnetic field strength

Figure 14: Ψ2 at different rf field amplitudes for a Parallel Magnetic dipole above the Superconductor. ~M(t) is chosen

such that ~B(t) = Brfsin(ωt)x̂. t=75 in all images.

Once we successfully modeled time evolution of vortex semi-loop at Brf = 0.75 (shown in Figure 12), we redid the
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same simulation for other values of Brf (shown in Figure 14).
The most important parameter we can extract from this simulation is the magnetic field produced by currents

induced inside the superconducting domain. This calculation is simplified due to the symmetric nature of the problem.
At the location of the dipole, magnetic field is produced only in x̂ direction.

Also, only Jŷ can produce magnetic field in x direction since the contribution from Jẑ will cancel out due to the
symmetry.

The BiotSavart law dictates (normalized):

Bsc =

∫
V

dV
~J × r̂
r2

=

∫
V

dV
JyHdipole(

x2 + y2 + (z −H2
dipole)

)3/2
(36)

where Bsc is superconductor screening field and ~r is the vector from dV to dipole location.
Using Eq.(36) Magnetic field produced by the superconductor at the dipole location was calculated, and is shown

in Fig. 15.:

Figure 15: Bsc vs time at dipole location for Brf = [0.05 : 0.05 : 1.05]

Figure 15 shows that at high enough Brf values Bsc is not sinusoidal anymore. This is an indicates that this process
should generate harmonic response. By taking the Fourier transformation of Bsc we can get harmonic response (Figure
16). The result is that we see monotonic increase of third harmonic response as a function of Brf . In experiment we
had seen periodic response as a function applied rf field amplitude. Thus, our simulation can’t explain the data yet.
The next step is to include defects.
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Figure 16: Left(Blue): Data from Bulk Nb sample measured via Near-Field MW Microscope (x-axes scaled).
Right(Red): Third harmonic response measured at the location of the dipole as a function of peak Brf value.

3.2.3 Usage of Defects

If we go back to equation 18, we see the usage of ε. Till now we were assigning ε(~r, Temperature) = 1− Temperature
Tc(~r)

which correspond to pure superconductor with no defect. We can edit ε(~r, T ) to add defects into the simulation.
The simplest defect can be defined by defining a domain with suppressed Tc. Lets redefine Tc as:

Tc(~r) = TcBulk − (TcBulk − TcDefect) e
− (x−xd)

2

2σx
− (y−yd)

2

2σy
− (z−zd)

2

2σz (37)

where xd, yd, zd are the coordinates of the defect and σx, σy, σz are the standard deviations in 3 coordinate axes.
This defects can be used as pinning sites to study the interaction between vortex semiloops and pinning sites.
The example shown in figure 17 is computed with R = 30, Hsc = 15, Hvac = 10, κ = 1, η = 1.675, Hdipole = 12,

~Bdipole = 0.3sin(ωt), T = 8.5K and Period = 200. A domain with σx = σy = σz =
√

2 and TcDefect = 2K is located
at ~r = 10x̂+ 20ŷ− 8ẑ to represent a localized defect. The simulation was run for 3 periods to stabilize and the results
are extracted during 4th period. We see that as ~B(t) increases a normal state domain forms at the origin. Later as
magnetic field direction is reversed the normal domain vanishes and vortex semi-loops emerge from it, similar to what
we have seen in figure 12.

Using equation 36 and taking its fourier transformation we can get harmonic response produced by interaction
between vortex semiloop and localized defect. This harmonic response is shown in figure 18. The result is that as a
function of Brf third harmonic response rises monotonically, reaches a peak and decreases monotonically. It is very
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Figure 17: (Loking from +x towards the origin) a-f: Ψ2 contours show the vortex semiloops at different times for a

Parallel Magnetic dipole above the Superconductor. ~M(t) is chosen such that ~B(t) = 0.3sin(ωt)x̂. g: Bdipole at the
surface vs time. Red circles correspond to snapshots a-f

different from result obtained without a defect, but still not close enough to explain our experimental data (see figure
16). Moreover, when the same simulation was repeated without a defect, same behavior was observed meaning that
this result is not due to the defect but due to the higher temperatures used compared to zero temperature results
shown in figures 12 and 14.

3.2.4 The effect of η value

In section 1.5 we defined η as

η =
3

µ0κ2σnvF l

We can draw parallel with the fluid mechanics to understand the physical nature of η. If the superconductor is the
fluid and the vortex is a particle or a local feature moving the fluid, η would represent viscosity of that fluid. Materials
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Figure 18: Third harmonic response measured at the location of the dipole as a function of peak Brf value.

in clean limit will have bigger l-mean free path thus lower η-”viscosity”, on other hand materials with higher density
of impurities (dirty limit) will have lower mean free path, thus higher ”viscosity”.

In order to observe this effect we simulated same scenario as in section 3.2.3 for different values of η but without
any defect. The results are shown in figure 19. We see that for lower values of η the vortex semiloops penetrate further
as expected. So the lower η the further features generated at surface will reach.

We also can see the change in the size of the normal state domain formed at origin. For low η values, formation
of vortex semiloops provides the needed relaxation and we have relatively small sized normal state domain. For high
η values, there is not enough time for the normal state domain to penetrate inside the bulk of the superconductor.
When η value is between this 2 limiting cases, the normal state domain size is very big, because there is enough time
for it to penetrate into the bulk, but there isn’t enough time for vortex semiloops to form and emerge from this normal
state domain.

We also note that the vortex semiloops and normal state domain are reaching the boundaries of simulation.
Although it might lead to nonphysical results, we believe the general dynamics is the same and for qualitative argument
those edge effects can be neglected.

3.3 Vortex Semiloops in SRF Cavity

In section 3.2 we studied the dynamics of vortex semiloops creatded by a point magnetic dipole. In this section we
will try to address more general case, a uniform magnetic field above the superconductor in the presence of defects.
We will study DC, RF and DC+RF cases.
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Figure 19: (Loking from +x towards the origin) Ψ2 contours show the vortex semiloops for a Parallel Magnetic dipole
above the Superconductor at t=150 which corresponds to peak value of Bdipole(t) = 0.4. a: η = 0.10, b: η = 0.31, c:
η = 1.00, d: η = 3.16, e: η = 10, f: η = 100.

3.3.1 Modeling Uniform Magnetic Field

As always the first task is to model a uniform magnetic field on the surface of an SRF cavity. In order to have truly
uniform field, the boundary between superconductor and air/vacuum should be simulated as an infinite plane. Same
steps as in sections 2.3.2 were used with slightly modified boundary conditions.

The dimain used for simulation is a simple block as shown in figure 20. There is a similar vacuum domain on top
of the superconducting domain which is not shown in figure, but was discussed before at length in section 2.3.2. The
boundary conditions are as follows:

For the top boundary of the superconducting domain (labeled 3 in figure 20) is the only physical boundary
between the superconductor and vacuum. All other boundaries are mathematical and do not exist in the physical
picture because the geometry is infinite in ±x̂, ±ŷ and −ẑ. For this top boundary:

~∇Ψ · n̂ = 0 or equally ~∇Γ · n̂ = 0

and ~A · n̂ = 0 or equally ~u · n̂ = − ~Aext · n̂

For the boundary at the bottom which should extend to infinity:

~∇Ψ · n̂ = 0 or equally ~∇Γ · n̂ = 0

and ~A = 0 or equally ~u = − ~Aext

and |Ψ|2= 1− T

Tc
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Figure 20: The superconducting domain used. ~B and ~J show the directions of applied magnetic field and resulting
screening current respectively
.

where T is the Temperature and T˙c is the characteristic critical temperature of the superconductor. Here the
assumption is that this boundary is sufficiently deep inside the superconductor that any externally applied field is
screened before it reaches here.

For the boundaries at ±x̂ and ±ŷ (1,2 and opposite sides in figure 20):

~∇Ψ · n̂ = 0 or equally ~∇Γ · n̂ = 0

and ~Ax = ~Az = 0 or equally ~ux = − ~Axext and ~uz = − ~Azext

Here ~Ax indicates x̂ component of ~A. We also assighned periodic boundary conditions (periodic both in x̂ and ŷ)

on Ψ and ~A. For this boundaries there is no condition for ~Ay since the uniform current running in ŷ direction will

contribute to ~Ay.
Again it is assumed that the simulation domain is big enough and any contributions due to defects and local

semiloop vortices will not reach this boundaries.
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In order to model the uniform magnetic field in x, external vector magnetic potential was set to: (see Eq. 35 for
definition)

~Aext = −Bxzŷ

In order to test the model the simplest scenario was tested. A uniform but weak magnetic field was applied and
the surface current was plotted as a function of the depth inside the superconductor. The results are shown in figure
21. Here we didn’t include any defects and the temperature dependence of ε is assigned as follows:

ε(~r, T ) = 1− T

Tc

λ(T ) =
λ0√

1− T
Tc

(38)

Figure 21: The density of the screening current as a function of depth below the surface. Tc = 9.3K.
.

We clearly see that the currents are decaying exponentially and the characteristic decay length depends on tem-
perature. This outcome was already expected from London Equations. The slope of this lines gives the penetration
depth, which is plotted as a function of temperature in figure 22. Since penetration depth is inversely proportional to
|Ψ|2 we can write an equation defining the temperature dependence of penetration depth:
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Figure 22: Penetration depth versus Temperature
.

3.3.2 Vortex Semiloop

Once we tested and verified our model we first did simulation for a rectangular prism shaped superconductor domain
with size of 80 x 60 x 20 and a similarly shaped vacuum domain with height of 10 on top of the superconducting
domain. Here κ = 1, η = 0.1, ~B(t) = 0.75sin(ωt)x̂, T = 2K and Period = 1000. The simulation was run for 3 periods
to stabilize and the results shown in figure 23 are calculated during 4th period.

A defect was introduced at the origin in the same fashion as described in section 3.2.3. The parameters for the
defect were chosen as follows xd = yd = 0, zd = −1 are the coordinates of the defect and σx = 6 and σy = σz = 1 are
its standard deviation. The defect has a TcDefect = 1K.

We see that as ~B(t) increases a vortex semiloop enters the superconductor and moves deeper into the bulk. After
t = 500 the direction of the magnetic field changes and we see an antivortex entering the superconductor (Fig23.c). At
t = 725 Vortex and Antivortex semiloops meet each other (Fig23.d). At t = 728 we see how they form 2 new vortex
semiloops (Fig23.e) which quickly collapse (Fig23.f). This the first numerical simulation of the model described in
[13].
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Figure 23: (Loking from inside the superconducting domain into the vacuum domain, 3 thick black edges are the

closest edges to the camera) a-h: Ψ2 evaluated at different times for a uniform magnetic field applied along (̂x) axis.
~B(t) = 0.75sin(ωt)x̂.
.
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